
The Mandalizer: Theory and Implementation

Mandalas

Mandalas as a form of decoration or spiritual art have been around for thousands or tens of thousands 
of years. They are best known as religious symbols from Hinduism, Buddhism, Jainism and Shintoism 
(the word itself is from the Sanskrit, and means "circle")1. Similar circular and spiral forms existed in 
rock carvings from many places throughout the ancient world: Aztec calendar stones2, Newgrange kerb 

1 https://en.wikipedia.org/wiki/Mandala
2 https://en.wikipedia.org/wiki/Aztec_sun_stone

The Mandalizer (https://mandalizer.fogbound.net) Copyright ©2021 by Samuel Goldstein



stones3, North American petroglyphs4, African petroglyphs5, and so on. In more recent years, mandalas 
were popularized by Carl Jung as secular/personal symbols6. They're also common in new-age 
spirituality and art.

So what defines a mandala? Depending on the source, you'll get different definitions. The primary 
commonality involves concentric circles or patterns.

What's This, Then?

The Mandalizer is a program to create visually-interesting patterns. It comes less from religious, 
spiritual, or psychological origins than aesthetic ones, which in no way limits the applications of the 
output to religious, spiritual, or psychological uses!

The Mandalizer Approach

The Mandalizer is written in fairly standard JavaScript using HTML 5 Canvas as its output.

It works on the principle of multiple layers or "stages" that are rotated around the center point. For each
layer, a type of decoration is chosen, bounds are calculated, and the stage is repeatedly rendered around
the circle (see Illustration 1: A single stage of a mandala). 

Optional enhancements are may also be added. An "underlay" (a color or texture applied to the stage), 
may be rendered before the main decoration for a stage, and an "overlay" design element may be 
applied over the center or edges of the stage.

Types of decoration started with simple things like lines and fills, and eventually added more complex 
things like rows of variable-size circles or petal shapes. These were loosely inspired by henna tattoo art,
thangka backgrounds, and whorls from banknotes and fancy certificates.

Many aspects of the generated mandalas involve randomness7: random types of decorations, random 
sizes, colors, fill styles, etc. To make things more interesting, a date-to-random-number-seed approach 
is used, so a given date will always yield the same random number sequence.

3 https://www.worldheritageireland.ie/bru-na-boinne/built-heritage/art/
4 https://www.newmexico.org/places-to-visit/regions/southeast/three-rivers-petroglyph-site/
5 https://www.megalithic.co.uk/article.php?sid=30876
6 https://www.ancient.eu/mandala/
7 Or pseudo-randomness, to be precise.

The Mandalizer (https://mandalizer.fogbound.net) Copyright ©2021 by Samuel Goldstein



Some Math

Basic Stage Geometry

Each stage is defined by a JavaScript class representing the chevron shape that gets repeated to form a 
concentric layer of the mandala. All stages are defined by a small set of radii: the inner and outer radii 
at the center and at one edge (since it's symmetrical about the center). These are shown as stage.e0, 
stage.e1, stage.c0, and stage.c1 in Illustration 2: Description of a "stage". Note that the stage does 
not maintain any information about the angle – this allows us to use the same stages to render the 
mandala with varying symmetry.

The Mandalizer (https://mandalizer.fogbound.net) Copyright ©2021 by Samuel Goldstein

Illustration 1: A single stage of a mandala



The stage object populates the radii variables in their next() method. In this method, they can also 
populate arbitrary variables to be tracked, like random coin tosses for whether the shape is filled, 
whether to use a gradient, etc.

The angle of each stage is computed based on the user's selected symmetry number. In other words, if 
the user wants 5-fold symmetry, the angle is 2π/5.

When the concentric layer is being rendered, a stage object's render() method gets called for each 
degree of symmetry. There's a set of utility functions that compute the bounds of a stage for a given 
step number and angle: these values are (somewhat arbitrarily) labeled by edge and axis as shown in
Illustration 2: Description of a "stage".

These bounds are pretty straight-forward trigonometry:

c0x = w/2 + stage.c0 * cos(angle * step)

c0y = h/2 + stage.c0 * sin(angle * step)

e0x1 = w/2 + stage.e0 * cos(angle * (step + 0.5))

e0y1 = h/2 + stage.e0 * sin(angle * (step + 0.5))

etc,

where w is the width of the canvas, and h is the height of the canvas.

Advanced Stage Geometry

Some stages want to do fancy things that involve filling in patterns that fit in radial slices ("segments") 
of the stage. Finding the bounds of these segments is still just trigonometry, but a lot more 

The Mandalizer (https://mandalizer.fogbound.net) Copyright ©2021 by Samuel Goldstein

Illustration 2: Description of a "stage"



complicated8. We have a similar utility function that will compute the bounds of each segment, so a 
stage can iterate through them when rendering itself.

The math for the utility function has to project along the inner and outer edges of the stage for each 
step. Since the stage itself only tracks the radii mentioned before, and the system has an angle for the 
width of the stage, we have a lot of unknowns to solve for.

To abstract a bit, we look at what it would take to find the point (e0x2, e0y2) on Illustration 3: Example of
stage segments. We don't know a lot of things directly. What we know is shown in Illustration 4: 
Known and Unknown in black; what we don't know directly is shown in red. To save space in the 
equations, we're abbreviating stage.c0 as C, and stage.e0 as E. To get to the point in question, we 
want to do simple trigonometry with length X and angle γ. How do we get those?

8 It's been many years since the author had a math class, and these equations took embarrassingly long to figure out.

The Mandalizer (https://mandalizer.fogbound.net) Copyright ©2021 by Samuel Goldstein

Illustration 3: Example of stage segments



To solve this, we start with the law of sines, which tells us
C

sin(θ )
=

Z
sin(δ )

=
E

sin(ϕ )
and law of 

cosines says Z2
=E2

+C2
−2EC cos(δ )

so Z=√(E2
+C2

−2EC cos(δ ))

Originally, we tried solving for θ using the law of sines: Z sin(θ )=C sin (δ ) so

θ =sin−1
(
C sin (δ )

Z
)=sin−1

(
C sin (δ )

√(E 2
+C 2

−2EC cos (δ ))
)

This ends up failing if θ is greater than 90°.

But since we have Z, we can solve for θ using law of cosines: C 2
=Z2

+E2
−2EZ cos(θ )

so C 2
−Z2

−E2
=−2EZ cos(θ ) and cos(θ )=

−C 2
+Z2

+E2

2EZ
and θ =cos−1

(
−C2

+Z2
+E2

2EZ
)

Hooray! This works even when θ exceeds 90°.

Since θ is the same for both pieces of the triangle, ζ =180−γ−θ

And again using law of sines, 
E

sin(ζ )
=

X
sin(θ )

or X=
E sin (θ )

sin(ζ )

Now we substitute a whole lotta stuff:

The Mandalizer (https://mandalizer.fogbound.net) Copyright ©2021 by Samuel Goldstein

Illustration 4: 
Known and 
Unknown



X=

EC sin(δ )

√(E2
+C2

−2EC cos(δ ))

sin (180−γ −sin−1
(

C sin (δ )

√(E2
+C2

−2EC cos(δ ))
))

or 

X=
EC sin(δ )

√(E2
+C2

−2EC cos (δ ))sin(180−γ −sin−1
(

C sin(δ )

√(E2
+C2

−2EC cos(δ ))
))

There must be simpler ways of computing this, but this is how I did it.

If you look at the code, you can see how this gets implemented in the segments() function, which 
converts the handful of angles and radii to a data structure of points like the one shown in Illustration 3:
Example of stage segments.

A couple of other helper functions can take a stage, and divide it up into the subsegments either by 
count, or by a fixed width along the edge.

Code and Observations

Stages, overlays, and underlays are all defined as JavaScript classes. Stages have a next() method, 
which gets passed the previous stage. It computes whatever boundaries based on the previous layer's 
values, and any random parameters it needs. Stages, overlays, and underlays all have render() 
methods, which they use to paint themselves onto the Canvas.

Overall, the code's not especially well laid out or organized. HTML controls and various runtime 
parameters were hand-coded, which seems like a poor idea in retrospect. In fact, creating the 
Mandalizer without some framework or library like jQuery or vue.js was weird and shortsighted. 

The stage model and the main rendering loop of the code are not really flexible enough. Looking at 
henna hand-art, these mandalas should support a degree of recursion, so stages could contain series of 
smaller mandalas. Also, they should support time-references, so the animation could go beyond the 
radial drawing, but could actually support a zoom-like effect of diving into an infinitely growing 
mandala. Remember those Mandelbrot-set programs that animated the color table or created videos of 
diving into the set? Had I planned better, these mandalas could do those things too.

But there you go. The best way to code something good is to rewrite it a few months or years after the 
first version.

Similarly, were I to do this again, I wouldn't use Canvas. After all, modern browsers support SVG 
natively, and the vector output would be usable in many other contexts. Want to print a mandala on a T-
shirt? It scales to that size without problem. Want to print on a billboard? No problem! Want to import 
it into a design program and tweak it? SVG would allow all of that.

All of  these criticisms, valid though they are, don't detract from the fact that the Mandalizer creates 
some pretty amazing images. Some of the results are far more beautiful than I envisioned when I first 
started work on the project.

The Mandalizer (https://mandalizer.fogbound.net) Copyright ©2021 by Samuel Goldstein



License

The Mandalizer code is licensed under the 3-clause BSD License.

https://opensource.org/licenses/BSD-3-Clause

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International 
license.

https://creativecommons.org/licenses/by-sa/4.0/legalcode

Copyright ©2021 by Samuel Goldstein <samuelg@fogbound.net>

The Mandalizer (https://mandalizer.fogbound.net) Copyright ©2021 by Samuel Goldstein


	The Mandalizer: Theory and Implementation
	Mandalas
	What's This, Then?
	The Mandalizer Approach
	Some Math
	Basic Stage Geometry
	Advanced Stage Geometry

	Code and Observations
	License


